- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Brooks, Remy (2)
-
Eby, Peggy (2)
-
Kessler, Maureen K. (2)
-
Lunn, Tamika J. (2)
-
McCallum, Hamish (2)
-
Peel, Alison J. (2)
-
Plowright, Raina K. (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Lunn, Tamika J.; Peel, Alison J.; Eby, Peggy; Brooks, Remy; Plowright, Raina K.; Kessler, Maureen K.; McCallum, Hamish (, Journal of Animal Ecology)Abstract Models of host–pathogen interactions help to explain infection dynamics in wildlife populations and to predict and mitigate the risk of zoonotic spillover. Insights from models inherently depend on the way contacts between hosts are modelled, and crucially, how transmission scales with animal density.Bats are important reservoirs of zoonotic disease and are among the most gregarious of all mammals. Their population structures can be highly heterogeneous, underpinned by ecological processes across different scales, complicating assumptions regarding the nature of contacts and transmission. Although models commonly parameterise transmission using metrics of total abundance, whether this is an ecologically representative approximation of host–pathogen interactions is not routinely evaluated.We collected a 13‐month dataset of tree‐roostingPteropusspp. from 2,522 spatially referenced trees across eight roosts to empirically evaluate the relationship between total roost abundance and tree‐level measures of abundance and density—the scale most likely to be relevant for virus transmission. We also evaluate whether roost features at different scales (roost level, subplot level, tree level) are predictive of these local density dynamics.Roost‐level features were not representative of tree‐level abundance (bats per tree) or tree‐level density (bats per m2or m3), with roost‐level models explaining minimal variation in tree‐level measures. Total roost abundance itself was either not a significant predictor (tree‐level 3D density) or only weakly predictive (tree‐level abundance).This indicates that basic measures, such as total abundance of bats in a roost, may not provide adequate approximations for population dynamics at scales relevant for transmission, and that alternative measures are needed to compare transmission potential between roosts. From the best candidate models, the strongest predictor of local population structure was tree density within roosts, where roosts with low tree density had a higher abundance but lower density of bats (more spacing between bats) per tree.Together, these data highlight unpredictable and counterintuitive relationships between total abundance and local density. More nuanced modelling of transmission, spread and spillover from bats likely requires alternative approaches to integrating contact structure in host–pathogen models, rather than simply modifying the transmission function.more » « less
An official website of the United States government
